Why is getting the PAF right important?

James Collins

March 13, 2020

Suppose we introduce correlated risk factors but don't properly adjust for the changes this causes in the joint paf. How wrong will incidence be? For two risk factors, we calculate the incidence for an individual as

$$
i=i_{G B D} \cdot\left(1-P A F_{\text {joint }}\right) \cdot R R_{1}\left(e_{1}\right) \cdot R R_{2}\left(e_{2}\right)
$$

Say our lack of adjustment causes us to underestimate the paf by 5%. So that $P A F_{\text {joint }}=0.95 P A F_{\text {true }}$. Then

$$
i=i_{G B D} \cdot\left(1-0.95 P A F_{\text {true }}\right) \cdot R R_{1}\left(e_{1}\right) \cdot R R_{2}\left(e_{2}\right)
$$

We can see what impact this has at the population level by taking an expected value over the joint exposure distribution.

$$
\begin{aligned}
E[i] & =E\left[i_{G B D} \cdot\left(1-0.95 P A F_{\text {true }}\right) \cdot R R_{1}\left(e_{1}\right) \cdot R R_{2}\left(e_{2}\right)\right] \\
& =i_{G B D} \cdot E\left[\left(1-0.95 P A F_{\text {true }}\right) \cdot R R_{1}\left(e_{1}\right) \cdot R R_{2}\left(e_{2}\right)\right] \\
& =i_{G B D} \cdot E\left[\left(1-P A F_{\text {true }}\right) \cdot R R_{1}\left(e_{1}\right) \cdot R R_{2}\left(e_{2}\right)+0.05 P A F_{\text {true }} \cdot R R_{1}\left(e_{1}\right) \cdot R R_{2}\left(e_{2}\right)\right] \\
& =i_{G B D} \cdot\left(E\left[\left(1-P A F_{\text {true }}\right) \cdot R R_{1}\left(e_{1}\right) \cdot R R_{2}\left(e_{2}\right)\right]+E\left[0.05 P A F_{\text {true }} \cdot R R_{1}\left(e_{1}\right) \cdot R R_{2}\left(e_{2}\right)\right]\right)
\end{aligned}
$$

By definition $E\left[\left(1-P A F_{\text {true }}\right) \cdot R R_{1}\left(e_{1}\right) \cdot R R_{2}\left(e_{2}\right)\right]=1$ so this becomes

$$
\begin{aligned}
E[i] & =i_{G B D} \cdot\left(1+E\left[0.05 P A F_{\text {true }} \cdot R R_{1}\left(e_{1}\right) \cdot R R_{2}\left(e_{2}\right)\right]\right) \\
& =i_{G B D} \cdot\left(1+0.05 P A F_{\text {true }} \cdot E\left[R R_{1}\left(e_{1}\right) \cdot R R_{2}\left(e_{2}\right)\right]\right)
\end{aligned}
$$

Again, by definition, we can say $E\left[R R_{1}\left(e_{1}\right) \cdot R R_{2}\left(e_{2}\right)\right]=\frac{1}{1-P A F_{\text {true }}}$ so we have

$$
E[i]=i_{G B D} \cdot\left(1+0.05 \frac{P A F_{\text {true }}}{1-P A F_{\text {true }}}\right)
$$

How big is that? Well, it clearly depends on the PAF.

Absolute PAF	Absolute PAF Error	Incidence Error (\%)
0.01	0.0005	0.05
0.10	0.0050	0.56
0.25	0.0125	1.67
0.50	0.0250	5.00
0.75	0.0375	15.00
0.90	0.045	45.00

Table 1: Incidence error due to 5% error in PAF

